Osmotic stress activates Rac and Cdc42 in neutrophils: role in hypertonicity-induced actin polymerization.

نویسندگان

  • Alison Lewis
  • Caterina Di Ciano
  • Ori D Rotstein
  • András Kapus
چکیده

Hypertonicity inhibits a variety of neutrophil functions through poorly defined mechanisms. Our earlier studies suggest that osmotically induced actin polymerization and cytoskeleton remodeling is a key component in the hypertonic block of exocytosis and cell movement. To gain insight into the signaling mechanisms underlying the hyperosmotic F-actin response, we investigated whether hypertonicity stimulates Rac and Cdc42 and, if so, whether their activation contributes to the hypertonic rise in F-actin. Using a recently developed pull-down assay that specifically captures the active forms of these small GTPases, we found that hypertonicity caused an ~2.5- and ~7.2-fold activation of Rac and Cdc42, respectively. This response was rapid and sustained. Small GTPase activation was not mediated by the osmotic stimulation of Src kinases, heterotrimeric G proteins, or phosphatidylinositol 3-kinase. Interestingly, an increase in intracellular ionic strength was sufficient to activate Rac even in the absence of cell shrinkage. Inhibition of Rac and Cdc42 by Clostridium difficile toxin B substantially reduced but did not abolish the hypertonicity-induced F-actin response. Thus hypertonicity is a potent activator of Rac and Cdc42, and this effect seems to play an important but not exclusive role in the hyperosmolarity-triggered cytoskeleton remodeling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmotic stress-induced remodeling of the cortical cytoskeleton.

Osmotic stress is known to affect the cytoskeleton; however, this adaptive response has remained poorly characterized, and the underlying signaling pathways are unexplored. Here we show that hypertonicity induces submembranous de novo F-actin assembly concomitant with the peripheral translocation and colocalization of cortactin and the actin-related protein 2/3 (Arp2/3) complex, which are key c...

متن کامل

Hypertonic inhibition of exocytosis in neutrophils: central role for osmotic actin skeleton remodeling.

Hypertonicity suppresses neutrophil functions by unknown mechanisms. We investigated whether osmotically induced cytoskeletal changes might be related to the hypertonic inhibition of exocytosis. Hyperosmolarity abrogated the mobilization of all four granule types induced by diverse stimuli, suggesting that it blocks the process of exocytosis itself rather than individual signaling pathways. Con...

متن کامل

Hyperosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphorylation in tubular cells: key role in the osmotically triggered F-actin response.

Hyperosmotic stress induces cytoskeleton reorganization and a net increase in cellular F-actin, but the underlying mechanisms are incompletely understood. Whereas de novo F-actin polymerization likely contributes to the actin response, the role of F-actin severing is unknown. To address this problem, we investigated whether hyperosmolarity regulates cofilin, a key actin-severing protein, the ac...

متن کامل

Optimization of WAVE2 complex–induced actin polymerization by membrane-bound IRSp53, PIP3, and Rac

WAVE2 activates the actin-related protein (Arp) 2/3 complex for Rac-induced actin polymerization during lamellipodium formation and exists as a large WAVE2 protein complex with Sra1/PIR121, Nap1, Abi1, and HSPC300. IRSp53 binds to both Rac and Cdc42 and is proposed to link Rac to WAVE2. We found that the knockdown of IRSp53 by RNA interference decreased lamellipodium formation without a decreas...

متن کامل

Thromboxane-induced actin polymerization in hypoxic neonatal pulmonary arterial myocytes involves Cdc42 signaling.

In hypoxic pulmonary arterial (PA) myocytes, challenge with thromboxane mimetic U46619 induces marked actin polymerization and contraction, phenotypic features of persistent pulmonary hypertension of the newborn (PPHN). Rho GTPases regulate the actin cytoskeleton. We previously reported that U46619-induced actin polymerization in hypoxic PA myocytes occurs independently of the RhoA pathway and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 282 2  شماره 

صفحات  -

تاریخ انتشار 2002